Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: An application to humanitarian demining

نویسندگان

  • Joaquin Estremera
  • Jose A. Cobano
  • Pablo González de Santos
چکیده

Autonomous robots are leaving the laboratories to master new outdoor applications, and walking robots in particular have already shown their potential advantages in these environments, especially on a natural terrain. Gait generation is the key to success in the negotiation of natural terrain with legged robots; however, most of the algorithms devised for hexapods have been tested under laboratory conditions. This paper presents the development of crab and turning gaits for hexapod robots on a natural terrain characterized by containing uneven ground and forbidden zones. The gaits we have developed rely on two empirical rules that derive three control modules that have been tested both under simulation and by experiment. The geometrical model of the SILO-6 walking robot has been used for simulation purposes, while the real SILO-6 walking robot has been used in the experiments. This robot was built as a mobile platform for a sensory system to detect and locate antipersonnel landmines in humanitarian demining missions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fault tolerant gait for a hexapod robot over uneven terrain

The fault tolerant gait of legged robots in static walking is a gait which maintains its stability against a fault event preventing a leg from having the support state. In this paper, a fault tolerant quadruped gait is proposed for a hexapod traversing uneven terrain with forbidden regions, which do not offer viable footholds but can be stepped over. By comparing performance of straight-line mo...

متن کامل

A control architecture for humanitarian-demining legged robots

The use of autonomous robots for humanitarian demining tasks is a promising solution. Among the different types of autonomous robots, walking robots exhibit significant advantages to negotiate uneven and unstructured terrain. However, the complete autonomous control of walking robots is still challenging. In this work, a hybrid reactive/deliberative control architecture is proposed for the auto...

متن کامل

Multi-agent Application: A Novel Algorithm for Hexapod Robots Gait Transitions

In this paper, a gait transition method has proposed that allows a group of multi-agent hexapod robot to switch from one gait to another gait with stable condition, during different terrain navigation. Typical gaits of locomotion are analyzed for hexapod robot. Hexapod robots frequently operate various gaits to locomote over a variety of surfaces. To enable locomotion in a changing surface, hex...

متن کامل

Optimal Fault Tolerant Gait Sequence Of The Hexapod Robot With Overlapping Reachable Areas And Crab - Systems, Man and Cybernetics, Part A, IEEE Transactions on

This paper extends the authors’ previous results on fault tolerant locomotion of the hexapod robot on even terrain by relaxing nonoverlap of redefined reachable cells of legs and considering crab walking. It is shown that in fault tolerant locomotion two adjacent legs of the hexapod robot can have overlapping redefined reachable cells with each other and consequently the stride length of the ga...

متن کامل

Image-based Method for Determining Better Walking Strategies for Hexapods

An intelligent walking strategy is vital for multi-legged robots possessing no a priori information of an environ‐ ment when traversing across discontinuous terrain. Sixlegged robots outperform other multi-legged robots in static and dynamic stability. However, hexapods require careful planning to traverse across discontinuous terrain. A hexapod walking strategy can be accomplished using a visi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2010